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x . Abstract
In this papcr we present the description of an isolated word recognition system and a discussion of various
design choices that affect its performance. In particular, we report experimental results aimed at evaluating

several methods to optimize the performance of dynamic warping algorithms. Three major aspects that have
been suggested in the literature have been investigated: () relaxation of the boundary conditions to aflow for | ,'%
inaccurate begin-cnd time detection, @ choice of warping algorithm, e.g., ltukura asymmetric, Sakoe and I 1
Chiba symmetric, Sakoe and Chiba asymmetric. and (ﬂ choice of an appropriate warping window to restrict ;
computation to a minimum needed for best recognition results. Recognition results were tested on two j ]
vocabularies: the digits and a highly confusable subsct of the alphabet (c.g.. e, b, d. p. t, g v, c, z). & The '
mlaxation.of the boundary conditions degraded the performance of the confusable subset and the digits. @)
The asymmetric Ttakura algorithm yielded better results for the confusables, while we obtained slightly better

results for the digits using the symmetric Sakoe and Chiba algorithm. {8 The choice of a 100-ms warping

window appears to be optimal for both vocabularics used.
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1. Introduction

Speech recognition is an important step towards more natural form of man-machine communication. In
many administrative or industrial environments the use of machincs, in particular computers, require prior
knowledge and experience to operate these machines. Alternatively, situations exist in which particular modes
of da;a catry (typing on a keyboard) arc not a;/ailablc (e.g., telcphone applications like dircctory assistance) or
not feasible (c.g., if a human user needs his hands for other tasks and typing is impractical) or simply too slow
(human specch transmits information at a significantly higher rate than typing ). Most applications can be
seen to point in the direction of bending the capabilitics of machincs.(o the necds of a human uscr rather than

expecting a uscr to invest time, interest, knowledge and skills to make usc of computers.

Specech is the most common form of human communication. It is desirable to provide this most natural
form of communication in man-machinc communication as well. Speech recognition thus plays an important
role in mnkiﬁg computers an integral part of every day life. For a varicty of applications, speech recognition is
already available, and increascd capabilities are under development and can be expected to enter the public
domain in the near future,23, .

Although it has been shown that sophisticated specch understanding systems can yield a high degree of
performancc‘s and that efficient hardware implementations for such sytems can be developed, the necd for
better limited vocabulary specch recognition systems has become apparcnt. Such systems are both useful for
a variety of practical applications and as a way to finding solutions to the problems of speech recognition at

the signal level. The fact that human spectrogram rcaders can achicve a high degree of recognition accuracy
even for nonsense uttcrances (i.e., in the absence of syntactic and semantic information)® is an indication that
much improvement for any recognition system can still be expected to come from a better understanding of

the recognition proccess at the signal level.

In the present study we are mainly concerned with issues connccted with the development of an isolated
word recognition system. Our hope is to cxtend the notions developed here to achieve further improvements,
greater computational efficiency, spcaker independent operation and the capability for connected speech

input in the ncar future.

Fig.1 depicts an overview of the main functional parts of the system. The main purpose of the "Front End"
is to digitize and parametrizc the incoming specch data to provide a compressed representation of the speech
signal that minimizes the storage aflocation and the computational cfforts needed in subscquent modules,

thus climinating irrelevant or redundant information, while preserving all relevant information. The module

labeled "Matching” serves the purpuse to extract and appropriately weight discriminatory cucs in the process .
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of matching the incoming unknown test token with a.reference token provided in the rcfcrcn;:c template data
base. Since cach of the modules still holds great potential for further improvements, all modulcs are loaded
under a flexibic research oriented supervisor, “"Cicada”. Cicada allows for the integration of experimental
ideas, extensions of the recognition system, and for great ease of creating test environments for experimental
runs of varying scope in a very convenient way. It thus provides both the generality and flexibility that is
desirable for a rescarch system, as well as reducing the implementational efforts necded to evaluate alternate
recognition methods. More detailed information about Cicada can be found in”. In the following we limit our
discussion to the design of the front end and to the design and optimization of the recognition algorithm (
"Matching"). '

In the following sections scveral signal processing issues relevant to speech recognition will be discussed
followed by a description of the design of the Front End, including a novel approach for automatic begin end
detection. Subsecquently, a detailed presentation of various recognition algorithms suggested in the literature
" or developed in the process of our investigations will be given. These algorithms were tested in three
experiments that were run exhaustively over our entire data base. Optimization results and conclusions from
this study will be found in the la§t chapters.
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2. Signal Processing for Speech Recognition

2.1 The Choice of Speech Signal Representation

The main problem in speech recognition is the identification of common characteristics among several
utterances of the same unit (word or sentence). Speech recognition by humans takes place by detecting
certain key features in an utterance. It is. therefore necessary to determine these featurcs, called auditory
hints. Although speaker and context dependent, there are several auditory hints which can be extracted by

signal processing and can be utilized effectively in a recognition process.

Spectral representation of speech is the most widely used method in speech recognition. Other features
such as energy, zerocrussings, pitch and duration are also used to supplement the spectral information.
Evidence of the importance of speciral information in preserving speech information has been provided by

several successful analysis-synthesis systems and also by spectrograms. Speech produccd by linear prediction

(LPC) or filter bank representation of spectral energy is highly intelligible, although it suffers from lack of

naturalness. This lack of naturalness is due to poor representation of source characteristics in the synthesis

part. Careful training of spectrogram reading enables one to identify most speech features needed for

recognizing an utterance. Since in a speech recognition system the objective is to recognize only but not to -

reproduce, it seems that the gross spectral information is adequate for this purpose.

Although spectral representation forms the basis for both speech bandwidth compression systems as well as
speech rccognition systems, the requirements of the representation vary -widely in both cases. In a specch
bandwidth communication system the signal should be represented so as to reproduce as many temporal
details as possible. The objcctive in this case is to produce a synthetic signal which resembles the originally
very closely in perceptual quality. In other words, all the variability of spéech and spcaker will have to be
preserved as far as possible. The processing therefore aims at representing all this information in a small
number of paramcters. The table below summarizes the differences in the requirements of signal processing
for spcech communication and recognition. The probiem of signal processing for specch recognition,
therefore, consists of reducing the variance while preserving the auditory hints. The auditory mechanism has
the remarkable ability to detect sharp changes in the signal and ignore cven long durations of significant

_encrgy regions, based on context. The concept of these auditory hints is probably responsible for human

speech recognition across several utterances and speakers without prior training of a particular individual

speaker.

Spectrogram reading experiments suggest several interesting clucs for design of specch recognition systems.

The results of the cxperiments demonstrates that the acoustic signal contains a great deal of phonctic

o
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Table 2-1: Requirements of Speech Processing:

Communication Recognition
1. Necessary to reconstruct the 1. Not necessary.
signal waveform.
2. Speaker variability to be 2. Not necessary.
preserved,
3. Speech variability to be 3. Variability to be suppressed.
preserved, o
4. Perceptual characteristics of 4, Need to preserve perceptual
speech and speaker characteristics of speech
information are needed information only.
(source characteristics).
5. Usually vocal tract model §. Auditory hints based
based analysis . (perception based).
{production based).
6. Reprasentation problem. ' 6. Pattern matching problem.
7. Each utterance is dealt with 7. Features common to multiple

independently. repetitions of a word

are needed.

information which can be capturcd by rules. The first thing to realize is that spectrogram displays only gross
spectral features and the suprasegmental features like intensity duration and pitch. All the available

. information is used both globally and locally to recognize an utterance. The spectral information is

compressed to a low dynamic range of about 15-20 dB in a spectrogram. Decspite the crude nature of
displéyed information the high recognition performance is a result of the reader’s ability to use only the
relevant information at each level (global and local). In particular, many times even the high energy spectral

information is not considered, as for example, the encrgy below about 400 Hz.

It is also interesting to note that very littlc speaker dependent information is captured by a spectrogram
reader. That means only featurcs that are mainly speaker independent are used for recognition. The reader’s
ability to recognize speech patterns even in the presence of some multiplicative or additive spectral distortions
suggest that the key temporal and spectral features are small and robust and probably context-dependent. A
spectrogram-like representation of the specch signal would thus appear to be adequate.

The above discussion also suggests that a uniform vocal-tract modeling approach like lincar prediction
analysis and matching using linear prediction coefficients may not be very suitable for a practical speech

recognition system. [n a spectral representation of LPC type the features corresponding to high cncrgy level
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are emphasized over the entire frequency range. In a uniform matching technique like L!;C metric all the
spectral informatioa is used for detcrmining the class of a given scgment of specch. In other words sclective
frequency domain matching for differcnt classes of sounds, as used intuitively in a spectrogram reading, is not
possible. Morcover, distortions alter the LPC type of rcpresentation in a signal dependent manner. Uniform
processing over time domain, like fixed frame rate analysis, also prevents sclective processing depending on
context. The uniform ropresentation of spectral information is also highly speaker dependent and this
dependence cannot easily be altered by simple transformations.

Comparing the threc modes of spectral representations, namely, uniform modeling approach as in LPC,
spectral values as in short-time spectral analysis and filter bank output reveals several distinct characteristics
in each mode. The characteristic of LPC spectrum is that it approximates the peaks in short-time specurum
better than valleys and this provides an efficient representation of the spectral envelope. It is thus ideally
suited to information storage and speech synthesis. Short-time spectral values give a detailed description of
the spectrum for purposes of analysis of vocal-tract transfer function and its excitation. Filterbank output
contains the temporal variation of signal energy in sclected frequency bands, thus it provides a description of
the averaged characteristics in each band.

From recognition point of view, selective processing in time and frequency domains holds the key to
success, as evidenced from the spectrogram reading experiments. A system should recognize an unknown
utterance, may be spoken by a different speaker, under diﬂ'crcr.n conditions of environment. and at different
times. Thus the statistical properties of the factors causing variability are not available, and cven if available,
they are not useful. The features for recognition, thercfore, should be robust under various conditions of
speech production.

Recent resuits? indicate that the choice of mef;&cqucncy cepstral cocfficients yields better recognition
performance over linear frequency cepstral coefficients , LPC and reflection coefficients. The success of the
mel-frequency cepstral coefficicnts is most likely duc to its virtue of modcling the perceptual behavior of the
auditory system more closcly, by simulating the variations with frequency of the critical bands on the basilear
membrane. ‘An additional advantage of using cepstral cocfficicnts as evidenced in our own informal
experimentation and from the results by Davis and Mermelstein® is that the use of only 6 cocfficicnts scems to
suffice to represent all relevant information.  In informal experimentation we have used two parametric
representations: 16 cocfTicients derived from bandpass-filtering the signal according to the mel-frequency
scale (sce table below) and 6 cepstral cocfficients derived from this filterbank output. Informal obscrvation
did not revcal significant differences between the two representations. The advantages of using filterbank
coefficicnts arc that frequency sclective rccognitidn schemes can be casily implemented, the cffects of
filterbank cocfficients on recognition can readily be conceptualized and that hardware filterbank




implcmentations are currently realized in many commercially available systems. For the present comparative
study mel-frequency filterbank coefficicnts have been chosen for the spectral representation. A detailed
outline of the signal processing performed in the front end of the recognition system is given below.

2.2 Description of the Schebme

In Fig 2 the functional blocks of the isolated recognition system is depicted. Speech data played back from
a cassette tape recorder was low pass filtered to 4500 Hz and sampled at 10 KHz rate. The samples were
stored as 16 bit numbers. A preliminary word boundary detection based on amplitude was used to determine

the signal region.

A frame size of 20 msec is chosen for analysis. The data in the analysis interval are multiplied with a
Hamming Window. The discrete Fourier transformation (DFT) of the windowed data is computed using a
256 point FFT. The 56 additional points are set to zero. The spectrum is computed by summing the squares

of real and imaginary parts of the DFT. In the resulting spectrum the sample numbers from 1 to 128 define

the frequency range 0-5 kHz.

The spectral values on the 0-5 kHz range are reduced to 16 values by using an approximate mel frequency
scale. Table 2-2 gives the mel frequency sample index and the corresponding frequency intervals over which
the spectral values are added to obtain the mel scale spectral value. Only half of the common spectral value
between adjacent intervals is considercd. ‘

After subtracting the background noise the spectral values on the melscale are represented as integer
number on dB scale i.e. The log mel speetral values in dB aré give by:
Li =10 logmmi i=l.,...16 :
For matching, a frame rate of 100 frames per second is chosen. To further compress the data and to normalize
for overall cnergy level of the signal, 15 coefficients are computed by differencing the adjacent spectral values
across frequency.

Two frames of two different utterances (namely the unknown and the reference are compared by
computing the squared Euclidecan distance between the 15 filterbank cocfTicients of the two utterances to be
. matched, i.c,

4 = 8 MK - M,(K]?

where {Ml(k)} and {M j(k)} are the mel cepstral cocfficients for ith and jth frames respectively.
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Table 2-2: Reduction of Spectral Data to Mel Frequency scale:

[s(i) is the spectral value at the ith sample]

[m(i) is the ith spectral cocfficient on the mel scale]

2.3 Begin-End Frames Detection

Indexonthe  Spectral CoefTicients on rrequency [nterval

mei frequ. mel scale

scale i .

1 m(1l) = s(1)+s(2)+s(3)72 0117 Hz

2 m(2) = s(3)/2+5(4)+ ...+ 5(6)+ A7)/ 117-273 Hz

3 m{3) = s(7)/2+s(8)+...+s(10)+s(11)/2 273429 Hz

4 m(4) = (172 +s(12)+ ...+ s(14) + s(15)72 429-585 Hz

5 m(S) = (15)/2 +(16)+ ...+ 5(18) +s(19)/2 585-742 Hz

6 m(6) = 5(19)/2+5(20)+ ...+ 5(22) +(23)/2 742-398 Hz

7 m(7) = s(23)/245(24)+ ...+ 5(26) +5(27)/2 898-1054 Hz

8 m(8) = s(27)/2+5(28) + ...+ 5(30) +s(31))2 1054-1210 Hz

9 m(9) = s(31)/2 +5(32)+ ... +5(35)+5(36)/2 1210-1406 Hz

10 m(10) = (36)/2+5(37)+...+s(41)+s(42/2  1406-1640 Hz

11 m(11) = s(42)/2+s(43)+ ...+ s(48) +5(49)/2 1640-1913 Hz

12 m(12) = s(49)/2+5(50)+ ...+ s(57)+(58)/2 1913-2265 Hz
3 m(13) = s(58)/2+5(59)+ ...+ S(68) + 5(69)72 2265-2695 Hz

14 m(14) = 5(69)/2+5(70)+ ... +s(81) +s(82)£2 2695-3202 Hz

15 m(15) = (82)/2+5(83)+...+ (9T +5(98)/2 3202-3827 Hz

16 m(16) = $(98)/2+5(99)+...+(116)+s(117)/2  3827-4570 Hz

For matching two isolated utterances or words, the end-points of the utterance must be known accurately.
It is important that the automatic detection of the endpoints is performed accurately. since, as we shall sce,
confusion in the subsequent recognition is the immediate consequence and possible recovery from

misrecognized cndpoints is difficult. The difficultics in automatic endpoint detection arise from the attempt

to discriminate between speech (which inludes weak frication noisces as in the word "FIVE™) and non-speech




signals, such as background noise. spcaker or system gencrated clicks and pops. In addiuon, Lﬁc algorithm has
to decide whether two intervals of specch signal belung together {(as in "SIX™ and "X". where the fricative
part of the final [s] is separated from the rest of the utterance by the stop closure). These features of the
incoming signal had to be taken into considcration in the design of the algorithm. Scveral mcthods were
proposcd for end-point detection of an utterance, but all of them use time-domain parameters such as
amplitude, energy, zero-crossing, ctc. Since most systems use spectral features for recognition, it would be
useful 1o have an end-point detection algorithm based on spectral values. Some of the advantages in using

spectral parameters over ime-domain parameters are:
1. They are less sensitive to noise.
2. Itis easier to fix thresholds.
3. The decisions can be made independent of absolute amplitude levels of the signal.
4, Since the spectral values are obtai.. :d by reducing the data to mel scale, the decisions will be

robust. )

2.3.1 Parameters:
The following parameters are used for end-point detection:
1. Average lcvél in dB(L).
2. Difference between high frequency and low frequency levels in dB (L d).
3. Background noisc level in dB (LD).

For computing valuecs of I and L, the first and the sixteenth log spectral values on the mel scale are ignored.
This is because the first value is strongly dependent on breath noise and the last (sixteenth) vaiue is very

susceptible to additive noise. The background noisc level is computed as follows:

1. Select the lowest 5 of the first 10 frames by arranging them in increasing order of their average
overall level. This will take care of impulsive noise like clipping.

2. Determine the average of L and denote it by Ll.
3. Repeat steps(1) and (2) for the last 10 frames and denote the resulting average value as l..2
4. Choosc the lower of the fevels 1, and ., as the buckzround noise level Ly,

5. Compute the average of 1. 4 over the five f‘ramcs_uscd 10 compute Lo and denote itby L od"

6. If Ll and L, arc higher or lower than some “reasonable” background noisc fevels, a value of 55 dB
is assumed for L.,. This situation may arise if the signal begins and ends outside the boundaries of
the data file.
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2.3.2 Notation and default values for thresholds:

1. nf = total numbcr of frames
2bl =L

M =L,

4blt=1L,

Sba=L,

6. lowt = 8 dB (lower threshold on level)

7. hght = 18 dB (higher threshold on level)

8. zct - 10 dB (threshold on hf-1f level)

9. nft - 0 (threshold for number of frames for smoothiné decisions).
10.incr 1 = S dB (increment in level thrcshoid after 30 frames).
11. incr2 = 5 dB (decrement in hf-1f threshold after 30 frames).
12. hghtx = 15dB (threshold to determine genuine speech intervat).

13. decision (d) is -1 for silence and +1 for signal and 0 for intermediate cases.

2.3.3 Decisions:

Initialize the first 5 and last 5 frames decisions to silence, ie., -1. Starting from nft up to nf-nft use the

following logic to determine the silence/signal frames. X 3

L Ifbl>(blt+hght), thend = 1.
2. Ifbl<(blt=1owt) and b2¢{(b2t+zct), then d = -1.
3. IfbIl{(blt+lowt) and b2>(b2t+ zct), thend = 0.

4. If bl lies in the range blt+lowt and blt+ hght and b2<{(b2t+act), thend = 0.

S. If bl lies in the range given in (4) and b2>(b2t+ zct). thend = 1.
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2.3.4 Smoothing the decisions:

The above decisions are smoothed using an 11 frame window. If the sum of decisions in the window is less

than or equal to 0, then the decision is set to -1. Otherwise, the decision is set to +1.

In general there can be more than one interval like in utteraces /8/ and /h/. To check the genuineness of
the additional intervals. their average level is compared with a threshold (blt+ hghux in this casc). IF the level
exceeds the threshold, then the end of the utterance is the end of the second interval. Otherwise, the end of
the uttcrance is the end of the first interval itself. Extensive testing and comparison with manually set
endpoints was performed to choose the best thresholds.

b
i
g
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3. Matching Methods for Isolated Word
Recognition

3.1 Introduction

Although research in-speech recognition has advanced in recent years to a state in which speaker
independent connected specch recognition has become feasible, several questions relating to design choices of
isolated word recognition systems have remained unanswered. These design choices affect both recognition
accuracies and computational efficiency drastically and it is important to carefully investiéate these issues
before deciding in favor of any such designs. Much attention has already been devoted to the optimal choice
of parametric representation of the spectral information and to the choice of the algorithm used to perform
time alignment between an unknown test utterance and a given reference template. Several techniques also
have becn suggested to improve recognition accuracy in the presence of errors in the begin-cnd time detection
of the uttcran;‘c. Preliminary experimentation with an isolated word recognition system has led us to define--
in agreement with many previous studies --several constraints or problem areas causing severe differences in

recognition accuracies:
L the vocabulary being used
2 speaker variations (cooperative, non-cooperative speakers)
3. begin-end time dctection

4. reference template selection

Although these problem arcas may scem obvious, most experimental studies have investigated speech
recognition techniques kecping the above variables fixed. i.e., one vocabul:;ry. selected speakers, manual or
semi-automatic begin-end time determination. In the present study we will auerhpt to account for these
variables and attempt (o select optimal design choices. In three experiments we are particularly concerned
with the choice of dynamic programming algorithm, methods to relax boundary conditions to deal effectively
with incorrect begin-end detection, and the optimal choice of a dynamic programming search space to
increasc computational efficiency.

3.2 Nonlinear time alignment by dynamic pfogramming

Many studics have alrcady invo:stigmcc:l9 the problem of how to most effectively align an incoming

unknown test-token to a known reference token or reference template. The goal in applying any such time

alignment procedure is to optimally account for durational variations of two diffcrent utterances of the same




o

13

word. The fundamental problem in the design of such a matching scheme is to implicitly tolerate variations
between two tokens that bear no phonetic relevance and to penalize when variations are present that are of
importance in discriminating between utterances in a linguistically meaningful way. Nonlinear time warping

by dynamic programuning has been shown to incorporate these goals to some degree in a very clegant way.
It's superiority over linear time warping methods!® 1! is due to the fact that it allows for an unevenly
distributed (nonlinear) "stretching™ and "compressing” along the time axes of the uttcrances to be matched.
This way it can account for the nonlincar changes in duration of the various phonetic subunits of syllables or
words. The clegance of dynamic programming is that we obtain this nonlinear treatment without the

necessity of scgmentation, and thus avoid this additional source of errors.!

The basic principle of dynamic programming can be considered to be a mapping of the time-axis of a

speech patiern A onto the time-axis of a pattern B in such a way that the resulting dissimilarity is minimized.
Adopting the notation of Sakoe & Chibal®. this can be formalized as follows

~

Let us assume the speech patterns A and B to be two sequences of parameter vectors describing the signal

properties of the utterances at a given instant (frame) in time, then we can write

A = aa,....2..3; and .

B= bl.bz.......bj....bl

We will furthermore illustrate the mapping procedure as a search space in an i-j plaﬂe. where the horizontal
axis i represents the time axis of the test token and the vertical axis j represents the time axis of the reference
token (sce Fig.3). For cach point P(i) in this warping plane, we definc a distance or dissimilarity measure
d(ij)- The goai of nonlinear time warping is to find the path (with path index k) through this plane whose
cumulative distance ]

D(A.B) = ZF_ dii(x)i(K)) @)

is minimal. At the endpoint P(1.J), this cumulative distance will then be considered as the dissimilarity
score for the match between utterances A and B and will subsequently serve as a decision criterion for the

. recognition.

Introducing a pﬁth weighting function w(k),(3.1) can be rewritten as

lk should be noted that cndpoint detection can be considered 2 Sil) remaining segmentation problem.  As we shall sce, it heavily
affects the outcome of the recognition. .




D(A,B) = MIN [ZF_ d(i(k)i(k)yw(k)/ ZF_ w(k)] G2

where f symbolizes all possible paths through the warping plane. The expression in the denominator serves
to normalize the dissimilarity score to render it independent of the number of points on the search path k. For
the case of w(k)=1, for example, ZL lw(k) simply reduces to K; and D(A,B) is simply the average distance,

averaged over the cntire search path.

For the practical application of speech pattern matching, the goal of providing great flexibility of the search
path (to obtain a minimal dissimilarity score) and the desire to only allow linguistically meaningful
oompfessions and expansions of the specch signal have to be traded off by imposing constraints or restrictions
on the search path. In this study we are interested in comparing the performances of the asymmetric warping
algorithm proposed by Itakura!? and the symmetric and asymmetric cascs of the (P=1) warping algorithms
by Sakoe & Chiba. o _ ' '

For the purpose of this comparative study we redefine the constraints somewhat differenty for the
reported versions. These alterations have become necessary to keep the variables fixed across the various
conditions investigated. These alterations will not affect the validity of the conclusions we are seeking. For all
the three algorithms the following constraints have been applied:

_3.2.1 Monotonicity:

C KD SR i 63
D) 500

3.2.2 Boundary conditions:
i1)=1, j1)=1 | | (34)
i(l():l. (K)=J

(In the next section, we will ‘ihvcstigatc methods of relaxing this condition.)
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3.2.3 Adjustment window or slope constraint:

All algorithms under consideration in this experiment implicitely define an identical slope constraint. This
mecans that, the scarch path in Fig. 3 is restrictcd to stay within the limits given by slope 2 and slope 1/72. This
restriction keeps the cxpanding and compressing function of the warp within linguistically meaningful limits.
Thus horizontal or vertical paths that imply skipping scveral frames in one of the utterances will not be
possible and the presence of different segments in the test or the reference token will result in a forced higher
total dissimilarity score and hence be a good indication of a poor match. These slope constraints (1/2 and 2)
together with the boundary conditions (3.4) restrict the scarch path to stay within a parallclogram illustrated
in Fig. 3. In some recognition schemes, the definition of an adjustment window that defines a meaningful
search space has been necessary, particularly, when the above mentioned slope constraints were lackingm.
Alternatively, the use of a window can prove useful since it eliminates redundant computation. This issue will
be discussed later in this paper. For the first experiment, the slope constraint will serve the purpose of
_ defining the sgarch space as shown in Fig. 3. It is consequence of the continuity conditions and the warping
functions as described below.

3.2.4 Continuity conditions and warping functions:

We have already noted before that our total cumulative distance D(A,B) is the sum of the distances
between time frames of the test and of the rcfcrchce utterance along the "best” path through the warping
plane. It remains to define an algorithm that will choose the bc;t path, namely a path that will result in a low
value of the total distance D(A,B) if A and B are tic same utterances. For cach point in the search space the
cumulative distance along the least expensive path up to this point is computed. More formally, this can be

expressed in the dynamic programming (DP) equation:

(0= min [ (K-DiD)+diRi@IWR] (35
ik-1)(k-1) '

For the three algorithms this can be accomplished in the following manner (refer to Fig. 4):
1. Warp 1 (Itakura, asymmetric):

The continuity condition

Xk) - j(k-1) = 0.1,2 ((k-1) » j(k-2))
=12 (kD= jk2) G6)

implics the upper and lower bounds of the sldpc constraints, namely the values 172 and 2. The
DP-equation for this algorithm can be written as

BT
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Notice that the weighting function w(k) in this case is 1.

It is also insightful to note that this algorithm allows for frames in the reference template to be
skipped entirely if g(i-1,-2) in the DP-cquation happens to be minimal. Thus time alignment is
achieved by compressing and expanding the time axis of the reference token.

2 Warp 2 (Sakoe & Chiba synvnetric) Here the somewhat different continuity conditions
iX)i(k-1) <1 and j(k)-j(k-1) <1 : (338
combined with the DP equation in this case

g(i-1j-2) + 2d(ij-1) + d(ij)
g(ii)= min g(i-14-1) + 2d(ij)
g(i-2j-1) + 2d(i-Ly) + d(ij) (9)

yiclds again the same slope constraints and thus limits the warp to the same search space as warp
1. Here the weighting function w(k) is given by

w(k)=(i(k)-i(k-1)) + G(k)-j(k-1)) (3.10)

This weighting was chosen for this symmetric algorithm to make two paths between points A and
B equally likely. This would not be the case for w(k)=1, since in this case, the diagonal path
would always be favored (Fig.5). because of its smaller number of distances. By this mecthod no
frames are skipped and time alignment is obtained by appropriate time axis compression of the

reference or the test token only.

3. Warp 3 (Sakoe & Chiba asymmetric) The continuity condition for this algorithm is identical to the
one of Warp 2. The DP-cquation is given by:

g(i-1j-2) + (d(i,j-1) + d(ij)/2
g(ij)= min { g(i-1j-1) + d(ij)
8(i-2j-1) + d(i-1j) + d(ij)

(3.11)

Again we obtain the same slopc constraint,

The weighting function w(k) for the asymmetric warp in its original form is given by
w(k) = (i(k) - i(k-1)) .

R

[
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Since w(k) in this case results to @ whenever i(k) =i(k-1). i.c.. when a vertical path is attempted, the
cumulative distance obtained from (3.5) would entircly disregard the distance associated with that
point. DP-cquation (3.11) is therefore a compromise that has been reported to yield better
pcrﬁmnanccl . An equal sharc of the weight of 1/2 is simply given to cach of the two distances
involved. In this manner we obtain an algorithm that achieves time alignment (like Warp 2) by
time axis compression only. In this casc. however, (unlike Warp 1) compression of both the time
axis of the reference and the test token can take place.

3.3 Relaxing the Boundary Constraints

It has been noted before that the presence of errors in the automatic begin-end time detection remains a
source of drastic degradations in recognition performance. Although the development of speaker adaptive,
background noisc adaptive endpoint detection is in progress and might vield much improvement in this
matter, it is desirable to perform the matching of the utterances in such a fashion that it is largcly unaffected
by minor inaccuracies in the endpoint detection. It can be seen from Fig. 3 that, for fixed boundary
conditions, at the beginning and end of the match, i.e., in the extrcme corners of the search space, little or no
excursions of the search space are possible. This implies that in the presence of small deviations {rom the
exact location of the endpoints, high distances will be computed at these points. The warping path thus will
go through a few poor matches until proper alignment can be achieved. Particularly, in recognition tasks
involving a vocabplary of high similarity, a small number of poorly matching time frames suffices to disturb

the overall distance measure in such a way that recognition errors result.

Several methods have been proposed to account for these difficulties and we shall briefly introduce them.
"In all cases the primary goal is to allow some flexibility at the boundarics in order to avoid forcing poor
matches. One possible method is to slightly deviate from the traditional concepts of dynamic programming
and not use the endpoints of test and reference utterances as anchor points between which the time alignment
has to take place, but rather to allow the scarch space to develop around the best matching pathn.“. In this
fashion the best match is continuously sought out of an unknown signal. Thus. it is not a match between two
fixed length utterances but rather could be considered as moving a reference window through an unknown.
This concept has been used to extend isolated word recognition schemes to word spotting applicmionsIS and
to continuous speech recognition systcmsm.ls. Recently Davis and Mermelstein® have also shown the
usefulness of preliminary time alignment, in order to anchor the recognition on islands of reliability, namely
prominerit syllabic cnergy peaks, rather than on automatically or maauaily sclected endpoints. This appears
to be of particular importance when the test tokens are not read in svlation but are embedded in a phrase or

sentence® and segmentation creates artificial boundaries.

In this paper we have investigated two alternate methods to account for endpoint inaccuracies. They both

arc conceptually aimed at relaxing the boundary constraints imposed by the warping algorithm. In the first -
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method, proposed by Rabiner et al.™*,!3, this is achieved by allowing the start and cnd points to lie within a
tolerance region § on the vertical (reference) axis and 2§ on the horizontal (test) axis of the warping plain.
Thus this modified warping algorithm spans the search space as shown in Fig. 6. Thus, given for example, an
inaccurate starting point in the test or the reference utterance, the algorithm can skip up to 8 or 28 frames to
align the test and the reference at the beginning and at the end. In spite of the superionity of this method over
the constrained endpoint'mcthod in the case of the digit vocabulary, recent results by Rabiner on an alpha-
digit vocabulary and preliminary results using a highly confusabie subsct of the alpha-digits show that under
these conditions recognition rates actually deteriorate. The reason for this behavior 1s quite simple. By
allowing several frames in the test and in the reference token to be skipped, the algorithm \;«ill conveniently
skip over important short segments in cases where short important discriminatory acoustic information is
contained right in the beginning or the end of an utterance. For the casc of the alpha-digit vocabulary, for
example, discrimination between “"B" and "E” deteriorates by virtue of not constraining the algorithm to.
attempt to match the short formant transition region. Thus an overall low dissimilarity score might result and

cause the utterance to be confused. While on one side the algorithm docs yield better performance by
lowering the dissimilarity score for "good™ matches. it does not provide the second aspect, namely to penalize,
i.e., increase, the dissimilarity score in the case of bad matches. An additional source of confusion here is due
to the properties of the [takura warping algorithm. Relaxing the boundary constraints on the test token (x-
axis) will encourage a path that starts at the right-mast allowable frame in the test-utterance, since at a given
point P(ij) and in the search space the path starting at this right most frame will be the summation over i-8
distances which usually is less than the summation over i distances on a path coming from the origin. To
compensate we have informally attempted to use average distances instead of cumulative distances, but
preliminary results have proven this idea to be unsuccessful. As an alternate design choice, therefore, a
slightly modificd method has been investigated. The relaxation of the boundary constraints has been
restricted to the reference token. The new boundaries are thus (sce Fig.6.¢c for illustration)

1) = 1, (K) = I and
1<) <8 J-8<iK)s)

Herc cvery frame in the test utterances will be matched in some way with the reference uttcrance and i< is not
possible to skip over information; yet. a certain tolerance in the choice of the starting point on the (y-axis)
reference axis is given. This seccms feasible in view of practical recognition systems, since the manual or semi-
automatic choice of the cndpoints of the reference utterance is a realistic possibility, while it is not for an

incoming unknown test token.

This and the algorithm described above have been evaluated for 8 of 3 and of § (i.c. 30 and 50 msecs,
respectively).
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3.4 Search Space Window

It has previously been stated that the warping algorithms uscd in this study span a scarch space in shape of
a parallclogram by virtuc of the slope constraints. 1t is reasonable to assume, however> 14, that the paths
leading through the comners B and C in Fig. 7 are highly unlikely to occur in reality. Thus unnecessary
computation is being performed at no gain and possibly loss of recognition accuracy. Computationally, the
number of grid points in the search Space is a good measure of costliness, since for each grid point the warp
and the distance compdtation have to be performed. Reducing the search space as much as possible,
therefore, is an efficiency constraint that has to be traded off or compared with the desire to achieve optimal
recognition accuracy. Recognition can be expected to deteriorate if the search space is fimited too severely. It
has been noted that for some warping algorithms the definition of a search space dclimiting adjustment
window has become necessary. Such a window can be useful for the present algorithms also When
superimposing a window onto the parallelogram of the warping search space, we obtain a new area, i.e., the
parallclogram minus the corners (shaded regions in Fig. 7) at B and C. The amount of computational saving
obtained by imposing this window constraint is depcndent on the length of the two utterances (o be matched.

Clearly, if one utterance is significantly longer than the other, the parallelogram will become rather thin (in '

the limiting case 1<J/2 or D>2J it will be non-existent and the warp can be aborted) and might lic within the
preset window-width. To ol;tain useful estimates in this matter we have generated histograms of utterance
lengths for different readings of a particular speaker and vocabulary. Fig. 13 through 15 show the histograms
for the ten readings of the V1 vocabulary (see Table 1_). the V2 vocabulary, and the alpha-digit vocabulary (all
digits and the letters of the alphabet). From simple geometric considerations, the computational saving in %
can easily be derived given the lengths of the test and the reference token and given the window widths.
Together with the histograms, we can evaluate the average saving for a given window width and for a givén
specaker. Fig.16 shows the average saving for cach speaker for the alpha-digit vocabulary, Fig.17 for V,. and
Fig.18 for V,. For conceptual reasons we do not actuaily use the window wi&th i(w) but rather the tolerance !
(Fig. 7), a measure of the range of frames within which the match with the reference utterance is allowed to

run ahead or lag behind the test utterance.

Notice that a tolerance of @ implies lincar time normalization or, in terms of Fig. 7, that only the grid points
lying on the diagonal arc computed and thus the saving is ncarly 100%. In the other extreme, when the
window width lics outside the warping parallclogram, no saving is obtained. The purpose of this experiment

" is to optimally trade off computational cfficicncy and recognition accuracy. More specifically, ¢ was chosen to
have the values 8, 3, 5, 8. and infinity, in other words, linear time normalization, 2 window of tolerance of £30

mscc. of £50 msee, of £80 msce, and no window at all.
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4. Experimental Method

For our experimental investigation we have mostly assumed worst casc conditions to test all of the above

ideas for robustness and consistency.

4.1 Vocabulary

The principal vocabulary of interest for our recognition system are the alphadigits, i.c., the digits "one™
through "zerc"” and the letters of the alphabet "A" through "Z". This vocabulary is not only very useful for a
number of real life applications, but also provides us with a set of utterances, out of which subsets with
varying degrees of discriminability can easily be defined. These subsets are of great interest sinc'e the acoustic
similaritics within such subsets point out the deficicncies of current speech recognition techniques. Here they
serve to study the performance of the various techniques listed above separately, i.e., when the techniques are
confronted with varying task domains. The particular two vocabularics (V1 and Vz) that we used for this
study are the ten English digits "ONE” through "ZERO" and the highly confusable subset of the alphabet,
e.g., utterances that all end in the vowel [i] (see Table 1).” Vocabulary V, is particularly interesting, since all
relevant discriminatory information is contained in a short segment of less than 100 msec duration in the
beginning of the utterance. The longer part of the utterance, the vowel part, on the other side, yiclds little or
no additional information. In fact. without applying any segmentation or weighting function to a given
matching proccdure, the predominance of the vowel part, will increase confusability”.lé. The vowel part in
the utterance "B", for example, might match the vowel pan in "P” better than what should be the correct

choice, the refcrence template for “B". [t is, therefore, reasonable to assume that the distribution of relcvant

discriminatory information over time is consistently diffcrent between the utterances of the vocabularies Vx
and Vz. Thus, rather than averaging over these diffcrences, we consider these wo vocabularics separately to
increase the general validity of possible consistent results or to differentiate between them. Testing for
robustness under the use of vocabularies of varying difficulty has recently been shown to be effective in

finding generally applicable optimizations”.

4.2 Speaker Variations

For the present study, no attempts of normalization over speaker variations are made. All eight speakers,
four male (FA, MA, RP, JL ) and four female (MS, DS, GG, SW ). have been randomly selected. In our
evaluation of the data obtained. we will therefore display these results for cach speaker separately. As we
shall sce, quantitative as well as qualitative variations can be scen across speakers. thus rendering this scparate

treatment uscful and insightful.
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4.3 Endpoint Detection

As has been noted by many authors, the automatic determination of the ¢ndpoints of an utterance still
remains a problem that consistently introduces a source of errors in any spsoech recognition system.
Alternatively, many recognition errors can be eliminated by appropriately manually tuning the endpoints of
an utterance. The humar} speech knowledge that implicitly is introduced by such manual tuning, however,
renders comparisons between various recognition schemes difficult if not impossible, particularly if we rely on
recognition rates as a measure of goodness of a specific method. We have thercfore decided 1o perform our
investigations under worst case conditions in this matter also, namely 0 use completely automatic endpoint-
detection and thus allow for degraded recognition results due to errors in the endpoint detection. This
procedure scems appropriate if we want to evaluate recognition schemes, such that conclusions might be
robust enough to stand various real life applications. As a matter of fact, since we do not create or select
reference templates independently, our recognition results will strongly reflect endpoint detection errors as we'
shall see. It should be noted here that, for the case of the utterance "eight”, two different pronunciations are
possible: one where aspiration noisc follows the stop closure of the "t" and one simply ending with the stop
closure, i.e, in which the closure is never released. These differences in the signal can be viewed as
differences in pronunciation and, consequently, discrepancies in the automatically chosen endpoints cannot
be classified as endpoint detection errors. A slight alteration that can be used to account for these
discrepancies is to select two templatcs, one for each case. For the present study, however, we eliminated one
of the pronunciations from consideration completely to simplify. the experimental procedure.

4.4 Test and Reference Data

Each of the eight speakers read the entire alphadigit vocabulary a total of ten times ; two repctitions each
day over a period of five days. The recordings were made in an office environment with a noise canceling
microphone and a high quality tape recorder. We thus obtained a data base of 36 utterances X 10 sets
(readings) X 8 spcakers = 2880 test tokens to be used for our experiments.

The recorded data was passed through the front end of the recognition system as described previously. The
input to the various algorithms investigated in this paper thus consisted of 15 spectral coefficients for every 10
msec speech and the automatically detected endpoints. Subsequently matching was performed as described
below.

When running recognition experiments, it is clear that significant improvements can be achieved when
appropriate reference templates are chosen. Rabiner ct. al"¥have shown that clustering techniques not only
improve the reliability of speaker dependent recognition systems, but that they can be extended to be suitable
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for speakers indcpcmicm operation. Davis and Mermelstein® have recently proposed an itcrative procedure
that creates highly reliable reference templates. This can be achieved by averaging and time normalizing over
a given sct of training tokens. Li, Alleva, and Reddy?! show that even a relatvely simple selection mechanism
suffices to pick out unambiguous and thus rcliable reference tokens yiclding a reduction in error rate by more
than 1/2. The latter technique has the advantage of not incurring the danger of losing or deemphasizing
acoustically and linguistically important information, such as air burst, glottal pulses, formant transitions,
durational cucs, and the like in the process of automatic averaging and normalizing. In the present study,
however, we have decided to use each data set as reference once and maich all the other nine sets against it.
This method, employed by Sakoe and Chiba and others'®!! has the advantage of exhaustively utilizing all the
data available and hence increasing the number of matches performed. It is hoped that 2 this fashion our
results will be more robust and unaffected by separate problem areas such as speech variability. On the other
( hand, it should be noted that our results will reflect singular difficulties such as severe endpoint detection
: errors more readily, since each utterance misrepresented by its endpoints might now cause several mismatches

E i to occur. , »

i In summary, we have tested cach condition by using cight speakers, two vocabularies, \l1 and V., and
{

choosing cach of ten data sets as reference. For each condition, speaker and vocabulary

10(# of rebferénce sets) X 9 (# of test sets matched with each
reference set) X 10 or 9 (# of utterances in one test set for V, or
V2 respectively) = 900 recognitions (for V1), 810 recognitions (for V2)

were performed. Thus, cach condition was tested by a total of:

8 (speakers) X [900 recognitions for V, + 810 recognitions for VZ]
= 13680 recognitions.
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5. Results and Discussion

5.1 Experiment {: Wa.rping algorithms

The recognition results for the three warping algorithms and for all eight spcakers are shown, for

vocabulary V1 in Table 2.a. and for vocabulary V2 in Table 2.b. Significance testing by aligned ranks® was
first performed to cstablish the significance of possible differences between the three algorithms. For the
confusable vocabulary these diffcrences were found to be significant at the p < .025 level, while for the digit
vocabulary only p < .3 level significance was computed.

In addition, Wilcoxon paired comparison ranking was performed to establish the signif';cance of the
differences between the three warping algorithms, In good agrecment with1", supcriority of warp 2 over warp
3 was established for both vocabularies, e.g. at the p <.1 level for V, and at the p < .03 level for V2' As for
warp 1, different results were found for V, and V,. For V,, warp 1 was seen to be superior to warp 2,(p<.02)
while for Yz, warp 2 was found to be equivalent to or insignificantly (p < .32) better than warp 1. In order to
understand this latter result, the strengths and weaknesses of both algorithms (warp 1 and warp 2) were
investigated more carefully. In particular, let us focus on the differences between warp 1 and warp 2 as
reflected by vocabulary Vz' Two typical confusion matrices (speaker: DS) for both algorithms are displayed
in Table 3. All numbers off the diagonal are numbers of mismatches. The column labeled "Total” indicates
the number of times a particular utterance was confused. Table 4 summarizes this data for warp 1 and warp 2.
For the two algorithm Table 4.a. and shows the number of mismaiches for a given utterance and speaker. In

‘Table 4.b. the differences between the two algorithms were computed. Clearly, warp 1 and warp 2 perform
differendy for different utterances. For utterances with comparably long prevocalic frication or aspiration
noises (¢.g.. ¢, 8, Z, t ), warp 2 is inferior to warp 1, while for utterances with only short transitions or bursts
(e.g.. e, b, d), the reverse is true. To understand these differing characteristics of warp 1 and warp 2, consider
the two different cascs in Fig. 8.

Let us assume two simplificd utterances. u, and u,, that are characterized by a noisy {aspiration, frication)
region n and a periodic vocalic region v. Let us furthermore assume that the noisy region of utterance 1, n,.is
much longer than that of utterance 2, n, (such asc, g, z compared to b, d. ¢ ). The resuiting warping plane is
depicted in Fig. 8a.) A tokcg. of the class of uttcrance Uy is used as an unknown test token (x-axis). As
reference, tokens of type utterance 1 or utterance 2 can be used. The recognition task is to discriminate
between these reference cases and sclect the appropriate token of type utterance 1 as the best match. For

simplicity we assumc here that noise will match best with noise and vocalic parts with vocalic parts, such that

for the twa different reference types. u; and u,. dynamic programming will provide the optimum paths, p,
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and Py The subsequent recognition decision will choose the lower overall dissimilarity scbre accumulated
over p, or p,, respectively. Due to the propertics of a specch representation based ou spectral information
only, distances between two noisy speech scgments will be generally higher than distances between two
vocalic parts (same vowel). Denoting the distances between two noisy samples as d o and between two vocalic

regions as d , the following overall dissimilarity scores will be obtained. Using warp 1

-

Dvl(“l'“l) =mnd, +v,d, .
le(“r“z) =n,d, +v,d, . (5.1)
Thus for these simplified utterances the result would be identical. For less idealized utterances the

outcome will depend on the "goodness” of the distances d, andd . Using warp 2 the following dissimilarity
scores arc obtained. '

Dwz(“r“l) = (nl + nl)d ot (v, + "1)dv

Dwz(ul.u2 = (n1+n2)dn_+ (v +v,d, : (5.2

Using the illustration in Fig.8, this can be written as

D'z(ul.ul) = 2n1dn + 2"1dv (5.3)
D'z(ul,uz) =2nd + 2vldv + (“1'"2de'd n) (5.4)
where n1>n2;

Thus, if we assumed d and qn to be equal, the right hand side of equations (5.3) and (5.4) would be equal
For dn>dv. however, D | (u r“z) <D ” (“1'“1) and, conscquently, the decision rule is more likely to choose the
improper reference token for its recognition and thercefore yicld the confusions observed for the utterances
cg.zetc.

The second case to be considered here is when the unknown to be recognized belongs to the group of
utterunces in which the vocalic part is preceded only by a short transitory region and/or a short or no burst of
noise, such as b,d.c.ctc. For this case, an utterance of type u, is matched with reference tokens of type u 1 and

u, (Fig. 8.b.). Again assuming the simplified reference utterances u, and u,, the overall dissimilarity scores

for the recognition wouid be as follows;




For warp 1:

le("z'“ﬂ =n,d, +vd,

le(“z'“z) = “zdn + "zdv

and for warp 2:
Dwz(uz.uz) =2n,d + 2v,d,

sz(uz.ul) = 2117_dn + 2v2dv - (“1'“2)(dn'dv)
where nl)nz;

Again the two cases provide the same weighting conditions for an cquivalent treatment of both paths in
warp 1. Warp 2 ﬁowever, provides diffcrent weighting conditions.  Since np>n, and d >d,
Dwz(“z'“1)>Dw2("2'“z)' Thus the correct token u, will be more likely to be chosen in this case, which explains
the superiority of warp 2 for this type of utterance. Fig.9 through 12 illustrate these properties. In this case
warp 1 correctly recognized the utterance "G" as "G" while warp 2 confused it with “B". Fig.9 and 10 show
the search paths from both algorithms matching "G" with "B" and "G" with "G". In Fig.11 and 12 the
cumulative distance along that path normalized for number of distances and weights is shown. It can be scen
that for the G-G match, the disproportionality of the distances in the noise and the vocalic rcgions causes
warp 2 to computc a higher dissimilarity score than warp 1 w_hich in this case led to the observed confusion.

Summarizing these properties, it can be seen that warp 2 has the property of actually providing different
weighting conditions if the values of the distances over scgments of specch vary significantly. When
comparing two such matches the one with the shorter paths through the areas o.f higher distances will be
favored. As we have scen in certain cascs, this is a desirable behavior leading to the correct recognition, while
in other cases it causcs confusion. Warp 1 does not have these propertics. as we have seen. Alternatively, the
outcome of thc warp often times is adversely affected by the possibility of skipping frames and hence
disregrading important transitory information. One possibility to counteract this deficiency is to select the
. shorter utterance in a match to be used as reference to discourage from using a steep (slope=2) path as has
been recently suggested by Das'8. Informal experimentation with this method, however, have not yielded
better results for our vocabularics.
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5.2 Experiment li: Relaxation of the Boundary Constraints

The results of Experiment I1 are displayed in Tables 5.a. and 5.b. Wilcoxon paired comparison ranking was
performed. The following ranking of "goodness” was obtained. For the digits V;: ’

.01 .33
1=5=24>2>3

For the confusables VZ:

.0001  .0001
1 = 6 = 4 > 2 > 3

where the numbers rcpresent the method number, "=" denotes cquivalence and ™>" superiority at
significance level p (indicated by the superscript). In accordance to our previous considerations, the results
indicate, that in particular for the confusables, method 2 and 3 suffer under the properties of the vocabulary.
While in some cases slight inaccuraciecs in endpoint detection can be accounted for with this method, a greater
amount of confusions is made possible by allowing for the loss of important information in the beginning of
the utterance. For the digit vocabularics no significant improvements were found for either of the
investigated methods. As we shall sec in the nexu scction, most recognition errors are caused for this
vocabulary by inaccurate endpoint detection. Some of these endpoint errors, however, include severe loss of
accurate information, for which the present methods could not compensate. [n such cases, word spotting

techniques that recognize partial equivalence between two utterances might prove more usefut, 3,

5.3 Experimeht ll: Adjustment Window

As has becn noted before, it is clear from Fig. 7 that the computational saving is directly depeadent on the
lengdi of the two utterances to be matched. In the limiting case, one utterance exceeds the length of the other
by a factor of two, the scarch space spun by the slope constraints reduces to zero and the warp can be aborted.
We have thus generated histograms of duration of words for three different vocabularies (Vl, VZ, and the
alphadigits). Fig. 13 through 15 shows three typical cxamples for speaker FA. In order to obtain an estimate
on the computational savings for different values of t, the expected average saving hzs bécn computed,
assuming all combinations of tokens for a vocabulary and speaker have been used, as is the case in these
experiments. The saving is assumcd to be proportional to the number of grid points in the scarch space that
were discarded by the restriction imposcd by the window. Fig. 16 through 18 cxpresses these results in
percentage saving. Zero percent saving implies the entire paraliclogram search space had to be computed,

while 100% saving mcans, no computation was performed. Even for lincar time normalization (t=0), the

minimum computation nceded is for all the points on the diagonal and hence the saving will always be
somewhat below 100%.
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Fig. 19 and 20 display the recognition results for two vocabularies (V |, V,) for the values of tused (0, 3, 5, 8

). In agreement withu. the supcriority of dynamic programming (tolerance ©0) over lincar time
normalization (1 = 0) can be scen here. It is displayed here for the purpose of comparison. Increasing t
generally improves recognition results, up to t = S. For the confusables (Vz), recognition accuracy even
reaches its highest value for five of the eight specakers (SW, DS, FA, RP, JL) for t = 5. Morcover, for
speakers MS and GG the improvements gained by using t > § are marginal. In case of the digit vocabulary,
for six of the cight speakers recognition rates do not improve or even degrade, when t is increased beyond the
value 8. For five speakers, t = § is even sufficient to yicld nearly equivalent (dcgiadation < .25% ) results.
For the speakers MA and GG only, significant degradation can be secn when the scarch patf) is restricted by
the window function. The reason for this behavior is due to grave begin-end time errors (missing noise
portions for "three” or "six"). Allowing for the search path to grow into the corners of the parallclogram
increases the likelihood that the path might allow one utterance to "catch up”™ with the other under the
presence of incorrect endpoints. The present results reflect this property strongly, because of the permutative
way of matchi;lg all data sets in our data base in thesc experiments, i.c., one¢ incorrect endpoint might cause
several errors. For a practical recognition system, this problem would be climinated by means of alternate
techniques such as the word spotting methods mentioned previously, or alternatively, by rejecting the entire
match when a certain threshold of dissimilarity is reached and asking the user to repeat, etc.

Comparing the results for the digit vocabulary. and the confusables, it is helpful to see that the nature of the
problems causing confusion is different. Most problems for the digit vocabulary are due to errors in the
endpoint dectection, while recognition results of the confusables are mostly affected by the genuine
recognition problem, i.e., to derive a discriminatory decision from. a set of highly similar speech signals. As
such, it can be understood that in the latter case (V,) results can actually be improved often by restricting the
search path, since (assuming no significant endpoint detcction errors) linguistically not meaningful search
paths are inhibited. In conclusion, for use of an alpha-digit isolatcd word recognition system, a window
constraint of tolerance five frafhcs. i.e.,, £50 msec deviation from the diagonal in the search space, can be
suggested. From Fig. 16 through 18, we sce that this window constraint leads to computational savings in the
range of 50% to 70%. The usage of a 50 msec window can be interpreted as correcting matches on a frame by
frame basis dynamically to lead ahcad of or lag behind a lincarly compressed or expanded mapping of two
uttcrances. This implics that a segment in an uttcrance read in isolation is unlikely to vary in duration by

more than 50 mseccs. For isolated and possibly connected word recognition systems we believe that this result

can be gencralized onto other vocabularics.




6. Summa'ry and Conclusions

In this paper we have investigated several nonlinear warping methods proposed in the literature in order to

optimize both recognition accuracy and computational efficicncy. These investigations were conducted in

view of vocabularies with varying degrees of difficulty of discrimination.

6.1 Warping Algorithm

The asymmetric dynamic programming algorithm proposed by Itakura was seen to be the best solution for
a vocabulary for which recognition depended critically on the discrimination between noisy, aperiodic,
transitory regions of the speech signal (such as vocabulary VZ). We have discussed the defTiciencies of the
Itakura algorithm and of the symmetric Sakoe & Chiba algorithm in detail and explained the reasons for
various algorithms to perform differently when different vocabularies were used. These defficiencies are
fairly subtle, but appear with significance in highly ambiguous vocabularics as the ones we studied. Choosing
between these algorithms we have decided in favor of the asymmetric [takura algorithm with practical
considerations in mind, namely to enable the extension to connected speech2 as provided by an asymmetric
algorithm. Some of the more fundamental problems of dynamic programming are the fact that all segments
receive equal treatment although the perceptual cues encoded in the signal are of differing nature. In this
fashion, present methods almost exclusively rely on the spectral information. For vocalic regions this is a
sufficiently reliable description, but for consonantal regions, cues such as noise energy, duration,and formant
transitions arc neglected or "warped away”. It is our hope that feature bascd knowledge, implemented cither
within the framework of dynamic programming or as a post processor, might in future research greatly

enhance reliability and recognition accuracy of isolated and connected speech recognition systems.

-

6.2 Relaxing Boundary Constraints

All methods tested have been seen as not to improve recognition results significantly. While relaxing the
boundary constraints in some cases can account for endpoint detection crrors by dynamically choosing the
"best™ begin or endpoints within a certain tolerance, it provides in other cases an additional source of errors
by allowing the algorithm to omit important short scgments at the boundaries (as is the case for some

utteranccs in the alpha-digit vocabulary).




6.3 Restricting of the Search Space by an Adjustment Window

The results indicate that a window that restricts a dynamic programming scarch path to deviate from a
linear match only by up to 50 msecs is an optimal choice for isolated word recognition. This window
constraint not only saves up to 70% computation at no loss of recognition accuracy, but even improves
recognition accuracy in many cascs by virtue of restricting the scarch to linguistically meaningful matches.2

lll is important to note that the recognition accuracy of a system depends on the nature of vocabulary and the Speaker. Figures 19 and
20 iltustrate this point. cspecially for the digit vocabulary given in Fig. 19. The realizable error rate varies from 0.2% to 5% depending on
the speaker. Therefore, companson of recognition systems perfornance based on error fate alone is not correct. although it is often scen
in the litcrature.

i
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Table 1 Vocabularies V1 and V2 have been used separately
for testing in subsequent experiments.




Table 2a.) Recognmon rates obtained using three warping
algorithms ( digit vocabulary V1).

; | Itakura Ssym Sasym

. fa: 99.89 100.00 1C0.0O
/ © ms: 97.56 97.67 97.45
. ma: 96.34 $6.56 ©5.11
ot rp: 100.00 1C0.00 ¢€9.78
Ji: 96.89 $6.67 95.89
ds: 95.34 9534 95.11
sw: 97.45 97.45 95.67

Q9: . 99.89 99.78 $9.89

. B - 1
- . i i

Table 2b.) Recognition rates obtained using thres warping
algorithms ( coniusabie vocabulary V2).

Ttakura Ssym Sasym

- fa: . 6877 6728 67.04
L. o ms: 61.48 60.99 59.14
: . ' ma: 48.77 45.80 44.82
, _ _ m: 77.28 78.52 77.53
- : R 65.06 64.07 83.46
| ds: = 69.63 69.14 69.87
: sw: 4444 4272 4247

gg: 43.70 41.23 39.83




S asms ey wueme=s “!‘

rofe}ence |
test o
e v b p d t g ¢ z Tot 1
« 37 16 2 27 Y |
R 65 3 1 9 3 10 28 ,
® 17 3 30 2 22 2 51 :
Itakura P 2.. 40 33 5 1 41 R
¢ 24 $§ 19 1 29 2 S 62
t 3 1 .‘-5 68 2 2 13
9. $ 6 9 64 17 }
¢ ) 81 {
: 2 1 2 *
S v d ] d t g é 2 Tot
Erfo} Percentage (246/810) =30.37 .
;cference
test
° v b P d ¢ 9 3 2 Tot
- « & . 15 23 .38
| ‘v &6 9 3 4 2 3 21
§ 21 2 31 27 ' 60
' Ssym P 1 2 4 4 1 28 4 38
d 26 2 23 28 1 .1 63
t 3 1 4 1. 68 1 13
g 1 1 4 10 11 54 27 i
' c 1 1 79 2
t. 2 8 .23 8
) v ] -] d . t g c z Tot
Error Percentage (250/810) =30.86
. * Table 3 Two typical confusion matrices (speaker DS) using
. the two warping algorithms Warp 1 and Warp 2 aver ‘
. the confusable vocabulary V2,
* ~ . K




ds a4 .28~ §1 41 852 13 17 o0 2 38 21 S50 38 53 13 27 2 &8
. y .

fa 39 13 44 43 45 38 8 4 19 26 14 43 48 41 50 8 17 18 |
99 40 §7 67 60 48 54 41 23 66 36 55 70 62 45 55 45 39 68 ;1
$1 38 63 37 48 32 20 26 3 19 34 63 31 45 32 28 31 8 19 |
ma 70 39 52 42 25 62 47 38 40 70 39 49 49 27 61 50 47 47 i
ms 30 49 31 S8 50 35 0 16 43 24 52 26 58 45 36 2 28 45

p 10 13 43 33 42 17 20 1 5 g‘ 19 37 28 35 18 23 2 4

sw 57 56 58 56 51 64 56 8 44 56 59 §6 60 45- 64 64 15 45

Tadble 4.a. Confusion matrices using warpl and warp2 (V2 vocabulary)
- A1V numbers indicate number of confusions out of 810
rocogn1t1ons.

D-SCORES -
.0 v b p d t g c 2

g 4 .2 -3 -2 3 -1 -§ -16 -2

.1 0 6 3 0 -8 -5 -5 0

ma 0 0 3 -7 -2 1 =3 -9 -7 |
: ms 6 -3 5§ 0 5 -1 -2 -12 -2 i
| M 2 -6 6 & -1 -3 -1 1

s 1 -3 2 -4 6 0 -8 -7 -t

Tadble 4.b. Oifference scores between confusions of warpl and
warpe. - .




Table 5a.) Reccgniticn rates obtained when the boundar
constraints winera relaxed accerding to rrc‘h,d 1
through method 5§ ( cigit vocabulary V1).

skipO skip3 skipT  vskip3 vskip5

fa: 99.89 100.C0 1C0.CO €9.89 g89.89
ms: 97.56 85.23« €5.33 - 97.67 g7.67
ma: $6.34 S0.67 S0.56 €3.29 g7.22
mp: 100.00 €9.33 $8.22 €8.8° €8.ES
i $6.89 £5.34 e58.22 €d8.89 €8.89
-ds: 85.34 95.34 e5.34 S85.34 e5.34
swi 97.45 - 97.34 6.67 97.56 g7.58
Qg: - 69.89 96.34 85.89 99.78 §9.78

Table 5b.) Recognition ratzss cbtained when the beundary
constraints where reiaxed according to meithod 1
through method 5 ( confusatle vocabulary V2).

skipD  skip3 'mpa vskip3 vskipS

fa:. T 68.77 85.19 44.44 67.78 65.19
ms: 61.48 $1.73 38.13 €0.25 £9.51

- ma: 48,77 41.73 34.20 49.13 49.38
fp: 77.28 70.37 £9.75 76.17 76.91

- I 65.06 57.18 53.21 . 63.28 65.C8
ds: €9.63 85.31 42.10 - 6S.01 67.28
swi 44.44 36.05 27.€0 42.59 42.84

gg: 43.70 37.78 32.47 44,44 44.32
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Fig. 1 Overview of the isolated word recognition system
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Fig.2 Diagram of the isolated word recognition system
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Fig.7 Restriction of the search space via an acjustment window
The dotted area indicates ccmputational saving threcugh the use
of the viindow constraint. Tolerance t is used as a measure
of the width as w.cll as the saving achieved.
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Fig.19 Recognition accuracy for the digit vecabulary (V1)
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